SOUTHERN UNIVERSITY
AT SHREVEPORT

Building a Career Pathway from High School into the Workforce for Skilled Technicians in Electrical, Industrial, and Process Engineering Technology

PI: Dr. Kenie Moses, Co-PI: Dr. Barry Hester, Co-PI: Dr. Fred Lacy

BACKGROUND

Building a Career Pathway from High School into the Workforce for Skilled Technicians in Electrical, Industrial, and Process Engineering Technology is a project whose overarching goal is to advance technician education by developing a three-pronged Associate of Applied Science in Engineering Technology that can strengthen the workforce pipeline of diverse, skilled graduates to meet Northwest Louisiana’s workforce needs.

OBJECTIVES

• Produce workforce-ready technicians by creating a 2+2+2 pathway aimed at decreasing time to degree for Engineering Technology graduates
• Increase awareness of educational and career opportunities through outreach initiatives and recruitment aimed at improving participation of females and under-represented populations in the engineering technology sector
• Full implementation of SUSLA’s 2+2+2 academic and career pathway in Engineering Technology from secondary diploma through associate degree and beyond

THE 2+2+2 MATRICULATION MODEL

- 1st (2) in model represents the 23-credit Dual Enrollment Certificate of Technical Students in Engineering & Technology
- 2nd (2) in model represents remaining credits to attain a 2-year A.A.S. degree in Engineering Technology
- 3rd (2) in model represents either employment with employer partner or transfer to 4 year degree program

COLLABORATORS/PARTNERSHIPS

• SWEPCO
• AEP
• Pasadena City College MNT-EC
• ExxonMobil
• University of New Mexico MNT-SIG
• Louisiana Tech University
• Sci-Port
• LA-STEM

OUTCOMES TO DATE

• Program Development and Implementation
• State and Federal Program Approval
• Dual Enrollment Agreements with Area High Schools
• MOUs with Area Employers for Program Completers
• National Undergraduate Research Experiences (CURN) with 4-year Collaborator Institutions

This project is supported by the National Science Foundation under Grant No. 2055480. Any opinions, findings, and conclusions or recommendations expressed here are those of the authors and do not necessarily reflect the views of the National Science Foundation.